Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470510

RESUMO

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Assuntos
Experiências Adversas da Infância , Águas Minerais , Recém-Nascido , Humanos , Animais , Suínos , Silício/metabolismo , Privação Materna , Mucosa Intestinal/metabolismo , Mamíferos
2.
Pharmacol Res ; 187: 106580, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436708

RESUMO

Stress or stress-induced intestinal disturbances, especially diarrhea, are the main triggers for inflammatory bowel disease and irritable bowel syndrome. Diarrhea and intestinal inflammatory disease afflict patients around the world, and it has become a huge burden on the global health care system. Drinking sodium metasilicate-based alkaline mineral water (SM-based AMW) exerts a potential therapeutic effect in gastrointestinal disorders, including gut inflammation, and diarrhea, but the supportive evidence on animal studies and mechanism involved remain unreported. The maternally separated (MS) piglet (Newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infant. This study aims to determine whether drinking SM-based AMW confers diarrhea resistance in maternally separated (MS) piglets under weaning stress and what the underlying mechanisms are involved. 240 newly weaned piglets were randomly divided into the Control group and the sodium metasilicate pentahydrate (SMP) group. A decreased diarrhea incidence was observed in SMP treatment piglets. The intestine injury and activated stress hormones (COR and ACTH) induced by weaning was alleviated by SM-based AMW. This may be related to the improvement of intestinal microflora structure and function by SMP, especially the increase of s_copri abundance. Meanwhile, SMP maintained the integrity of the duodenal mucus barrier in MS piglets. Importantly, by targeting NF-κB inhibition via the microbiota-gut interaction, SM-based AMW alleviated intestinal inflammation, maintained fluid homeostasis by modulating aquaporins and fluid transporter expression, and enhanced barrier integrity by suppressing MLCK/p-MLC signaling. Therefore, drinking metasilicate-based alkaline mineral water confers diarrhea resistance in MS piglets via the microbiota-gut interaction.


Assuntos
Diarreia , Microbioma Gastrointestinal , Águas Minerais , Silicatos , Animais , Diarreia/terapia , Inflamação/terapia , Águas Minerais/uso terapêutico , Suínos , Silicatos/uso terapêutico
3.
J Adv Res ; 52: 29-43, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36539076

RESUMO

INTRODUCTION: Diarrhea has the fourth-highest mortality rate of all diseases and causes a large number of infant deaths each year. The maternally separated (MS) piglet (newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infants. Drinking alkaline mineral water has the potential to be therapeutic in gastrointestinal disorders, particularly diarrhea, but the supporting evidence from system studies and the mechanisms involved have yet to be reported. OBJECTIVES: This study aims to determine whether drinking alkaline mineral water confers diarrhea resistance in MS piglets under weaning stress and what the fundamental mechanisms involved are. METHODS: MS piglets were used to create a stress-induced intestinal disorder-diarrhea susceptibility model. A total of 240 MS piglets were randomly divided into two groups (6 pens/group and 20 piglets/pen). IPEC-J2 cell line was used for in vitro evaluation. An alkaline mineral complex (AMC) water was employed, and its effect on the hypothalamus-pituitary-adrenocortical (HPA) axis, gut microbes, gut morphology, and intestinal epithelial cell (IEC) proliferation and differentiation were investigated using a variety of experimental methodology. RESULTS: AMC water reduced diarrhea rate in MS piglets by inhibiting the HPA axis, ameliorating gut microbiota structure, and stimulating IEC proliferation and differentiation. Apparently, the brain-microbe-gut axis is linked with AMC water conferring diarrhea resistance in piglets. Mechanistically, AMC water decreased stress hormones (COR and Hpt) secretion by suppressing HPA axis, which then increased the abundance of beneficial gut microbes; accordingly, maintained the proliferation of IEC and promoted the differentiation of intestinal stem cells (ISC) into goblet cell and Paneth cell by activating the Wnt/ß-catenin signaling pathway. In the absence of gut microbiota (in vitro), AMC activated the LPS-induced Wnt/ß-catenin signaling inhibition in IPEC-J2 cells and significantly increased the number of Lgr5 + cells, whereas had no effect on IPEC-J2 differentiation. CONCLUSION: Drinking alkaline mineral water confers diarrhea resistance in MS piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis; thus, this study provides a potential prevention strategy for young mammals at risk of diarrhea.


Assuntos
Mucosa Intestinal , Águas Minerais , Animais , Humanos , Suínos , Mucosa Intestinal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Diarreia/metabolismo , Diarreia/prevenção & controle , Minerais/metabolismo , Regeneração , Mamíferos
4.
J Anim Sci ; 100(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913841

RESUMO

The purpose of the present study was to investigate the effects of drinking water alkaline mineral complex (AMC) supplementation on growth performance, intestinal morphology, inflammatory response, immunity, antioxidant defense system, and barrier functions in weaned piglets. In a 15-d trial, 240 weaned piglets (9.35 ± 0.86 kg) at 28 d of age (large white × landrace × Duroc) were randomly divided into two groups: the control (Con) group and the AMC group. Drinking water AMC supplementation improved (P < 0.01) final body weight (BW) and average daily gain (ADG) in weaned piglets compared to the Con group. Importantly, AMC reduced (P < 0.01) the feed-to-gain (F:G) ratio. AMC water improved the physical health conditions of piglets under weaning stress, as reflected by the decreased (P < 0.05) hair score and conjunctival score. Moreover, there was no significant (P > 0.05) difference in relatively small intestinal length, organ (liver, spleen, and kidney) indices, or gastrointestinal pH value in weaned piglets between the two groups. Of note, AMC significantly promoted the microvilli numbers in the small intestine and effectively ameliorated the gut morphology damage induced by weaning stress, as evidenced by the increased (P < 0.05) villous height (VH) and ratio of VH to crypt depth. Additionally, AMC lessened the levels of lipopolysaccharide (LPS, P < 0.01) and the contents of IL1ß (P<0.05), and TNF-α (P<0.05) in the weaned piglet small intestine. Conversely, the gut immune barrier marker, secretory immunoglobulin A (sIgA) levels in serum and small intestine mucosa were elevated after AMC water treatment (P < 0.01). Furthermore, AMC elevated the antioxidant mRNA levels of (P < 0.05) SOD 1-2, (P < 0.01) CAT, and (P < 0.01) GPX 1-2 in the small intestine. Likewise, the mRNA levels of the small intestine tight junction factors Occludin (P < 0.01), ZO-1 (P < 0.05), Claudin 2 (P < 0.01), and Claudin 5 (P<0.01) in the AMC treatment group were notably higher than those in the Con group. In conclusion, drinking water AMC supplementation has an accelerative effect on growth performance by elevating gut health by improving intestinal morphology, the inflammatory response, the antioxidant defense system, and barrier function in weaned piglets.


The piglet suffers vital physiological, environmental, and social challenges when it is weaned from the sow that can predispose the piglet to subsequent diseases and other production losses, and these challenges are responsible for serious economic losses to the swine industry. Weaning stress induces intestinal injury, decreased immunity, and digestive system dysfunction, which then reduces feed intake and inhibits the growth performance of piglets. It is well known that alternatives to antibiotics for preventing weaning stress in weaned farm animals are sorely needed. The biologically beneficial effects of alkaline mineral water are widely reported. Alkaline mineral complex (AMC), as an immunomodulator, is considered to have antistress effects in the swine industry. In addition, treatment through drinking water is considered to be an efficient and low-cost feasible disease control strategy. Drinking water AMC supplementation is expected to exert health benefits in pigs; however, the responses of weaned piglets to water supplemented with AMC have not been fully explored. Thus, this study explored the effects of drinking water AMC supplementation on growth performance and gut health in weaned piglets. Our results showed that AMC water supplementation conspicuously enhanced the growth performance by improving the gut health.


Assuntos
Antioxidantes , Água Potável , Animais , Suínos , Desmame , Antioxidantes/farmacologia , Lipopolissacarídeos/farmacologia , Ocludina , Suplementos Nutricionais , Claudina-2 , Claudina-5/farmacologia , Fator de Necrose Tumoral alfa , Mucosa Intestinal , Minerais/farmacologia , RNA Mensageiro , Imunoglobulina A Secretora/farmacologia , Superóxido Dismutase
5.
Poult Sci ; 101(9): 102030, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35905545

RESUMO

Transport stress (TS) not only affects animal welfare but also eventually leads to higher morbidity and mortality. Moreover, TS could induce heart injury in animals, but the possible mechanism has yet to be fully explored. Astragalus polysaccharide (APS) is a main active component of Radix Astragali, which has an extensive anti-stress effect. However, the effect of APS on TS-induced heart injury has not yet been elucidated. In this study, a chick model of simulated TS was used. 240 newly hatched chicks were arranged into 4 groups: Control (Con), Transport group (T), Transport + water group (TW), and Transport + APS group (TA). Before transport, the chicks of the TW and TA groups were treated with deionized water and APS (0.25 mg/mL, 100 µL) by oral drops respectively. The histopathological analysis of myocardial tissue was assessed by hematoxylin and eosin staining. qRT-PCR and Western Blotting assays were employed to measure the expression of genes and proteins. Semiquantitative PCR was performed for the X box-binding protein-1 (XBP-1) mRNA splicing assay. The results indicated that APS significantly reduced TS-induced myocardial histopathological changes. Meanwhile, TS induced endoplasmic reticulum stress (ERS), evidenced by an activation of the unfolded protein response (UPR) signaling pathway and up-regulation of ERS-markers (P < 0.05). Moreover, TS markedly triggered autophagy induction by activating AMP-activated protein kinase (AMPK), reflected by augmented LC3-II/LC3-I, AMPK phosphorylation and autophagy-related genes (ATGs) expression (P < 0.05). Importantly, our study manifested that treatment of APS could reduce TS-induced ERS and AMPK-activated autophagy, accordingly alleviating heart injury of transported chicks. In summary, these findings indicate that TS induces heart injury in chicks via an ERS-UPR-autophagy-dependent pathway, and APS as an effective therapeutic method to alleviate it.


Assuntos
Astrágalo , Traumatismos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Autofagia , Galinhas/metabolismo , Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/veterinária , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Transdução de Sinais , Resposta a Proteínas não Dobradas , Água/farmacologia
6.
Carbohydr Res ; 346(2): 203-9, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21185014

RESUMO

The reaction process for the selective deprotection of acetylated glucosides by dibutyltin oxide in methanol is investigated by using methyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside as a model substrate with ESIMS and NMR techniques. According to the results, it is inferred that at first, dimeric 1,3-dimethoxytetrabutyldistannoxane is formed by the reaction of dibutyltin oxide with methanol, and then the tetraorganodistannoxane reacts with the acetylated glucoside to produce glucoside-organotin complex intermediates. Finally, the complex intermediates are hydrolyzed leading to the free-OH glucoside and organotin acetate derivatives. The reaction is affected by neighboring group participation and steric hindrance, which allow for high selectivities among different acetyl groups in acetylated glucosides.


Assuntos
Glucosídeos/química , Compostos Orgânicos de Estanho/química , Acetilação , Espectroscopia de Ressonância Magnética , Metanol/química
7.
Chem Commun (Camb) ; (20): 2414-5, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12430467

RESUMO

A simple and one-pot route for the synthesis of d4T or AZT hydrogen phosphonate derivatives via reaction of d4T or AZT with phosphorus trichloride, then alcoholysis and dealkylation in the presence of the corresponding alcohol is described.


Assuntos
Pró-Fármacos/síntese química , Estavudina/síntese química , Zidovudina/síntese química , Fármacos Anti-HIV/síntese química , Humanos , Organofosfonatos/síntese química , Estavudina/análogos & derivados , Zidovudina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...